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etland loss are often felt at regional scales, effective planning and management
require a comparative assessment of local needs, costs, and benefits. Satellite remote sensing can provide
spatially explicit, synoptic land cover change information to support such an assessment. However, a
common challenge in conventional remote sensing change detection is the difficulty of obtaining
phenologically and radiometrically comparable data from the start and end of the time period of interest.
An alternative approach is to use a prior land cover classification as a surrogate for historic satellite data and
to examine the self-consistency of class spectral reflectances in recent imagery. We produced a 30-meter
resolution wetland change probability map for the U.S. mid-Atlantic region by applying an outlier detection
technique to a base classification provided by the National Wetlands Inventory (NWI). Outlier-resistant
measures – the median and median absolute deviation – were used to represent spectral reflectance
characteristics of wetland class populations, and formed the basis for the calculation of a pixel change
likelihood index. The individual scene index values were merged into a consistent region-wide map and
converted to pixel change probability using a logistic regression calibrated through interpretation of historic
and recent aerial photography. The accuracy of a regional change/no-change map produced from the change
probabilities was estimated at 89.6%, with a Kappa of 0.779. The change probabilities identify areas for closer
inspection of change cause, impact, and mitigation potential. With additional work to resolve confusion
resulting from natural spatial heterogeneity and variations in land use, automated updating of NWI maps and
estimates of areal rates of wetland change may be possible. We also discuss extensions of the technique to
address specific applications such as monitoring marsh degradation due to sea level rise and mapping of
invasive species.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Wetlands and the need for monitoring

Wetlands perform a wide range of stabilizing functions, including
water quality protection through particulate and nutrient retention,
minimization of flooding and erosion, maintenance of stream flow,
and recharging of groundwater (Tiner, 2003). The high productivity of
many wetlands supports diverse, unique, and economically important
biological communities (Gibbs, 2000). The spatial arrangement of
intact wetlands is important, as they provide habitat cores and corri-
dors that assist in maintaining the diversity of entire landscapes and
can form cornerstone elements for regional conservation strategies
(Weber, 2004).
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Although wetlands are inherently dynamic systems and are
created, modified, and destroyed by a range of natural processes, the
direct or indirect consequences of human activity are the main cause
of wetland change and loss in the United States. Less than half the
wetland acreage that existed at the time of European settlement
remains (Dahl, 2006). Urban and agricultural expansion have driven
extensive wetland filling and draining, while hydrological alterations
to wetlands due to reservoir and river levee construction, marsh
diking, and shore stabilization are widespread (Brinson & Malvarez,
2002; Kennish, 2002; Tockner & Stanford, 2002). Increasing nutrient
and pollutant inputs due to rising populations threaten wetlands in
coastal areas (Kennish, 2002), and relative sea level rise has resulted in
the loss of many estuarine marshes (e.g., Morris et al., 2002; Erwin
et al., 2004). The spread of invasive species has compromised the
biological integrity and ecosystem functions of other wetlands
(Kennish, 2002; Tockner & Stanford, 2002).

The diverse and pervasive threats to wetlands point to the need
for comprehensive monitoring efforts at regional to national scales.
The U.S. National Wetlands Inventory (NWI) program has undertaken
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this task for the continental U.S. in their Wetland Status and Trends
(WST) reports. The most recent (Dahl, 2006) provides sample-based
aggregated nationwide change rate estimates for major wetland types
during the time period 1998–2004. Although the analysis indicated a
net expansion of wetland area during these years, the increase was
primarily due to the widespread construction of freshwater ponds.
Because artificial ponds provide few of the benefits associated with
natural vegetated wetlands, the total area occupied by wetlands can
be a misleading statistic. Natural vegetated wetlands continue to be
eliminated, although at a considerably lower rate than they were prior
to the mid-1970s (Dahl, 2006).

Although national trends in the prevalence of various wetland types
are useful, many applications (e.g., ecosystem modeling, conservation
planning) need information on the spatial distribution of wetland
modification and loss. Koneff andRoyle (2004) used kriging to produce a
continuous change map at 2-mile resolution based on the image- and
field-interpreted samples providedbya previousWSTstudy.While their
approach produced good results for some wetland types, other types
were problematic, likely due to the high level of spatial variability in the
distribution of agricultural, forestry, and development activities in the
mid-Atlantic region (Koneff & Royle, 2004). Kearney et al. (2002),
assessing coastal marsh losses in the Chesapeake and Delaware Bays,
concluded that comprehensive spatially explicit analyses are needed to
address unpredictable regional variations in the processes driving
wetlanddegradation. Synoptic change estimates could alsobeapplied to
inherently spatial landscape-level problems such as assessment of
trends in water quality and wildlife habitat suitability.

1.2. Wetland mapping

Wetland identification via satellite-based optical remote sensing is
well-represented in the literature (e.g., Sader et al., 1995; Lunetta &
Balogh, 1999; reviewed by Ozesmi & Bauer, 2002) despite the special
challenges presented. Standing water and the soil surface can be
obscured by vegetation, and most wetlands experience fluctuations in
flooded extent and water depth and turbidity (Rundquist et al., 2001).
Seasonal and inter-annual environmental change create variability in
inland wetlands, while the tidal cycle causes rapid changes in the
apparent extent of coastal wetlands (Pavri & Aber, 2004). The high
productivity of vegetation in many wetland environments often
translates into large inter-seasonal fluctuations in actively photo-
synthesizing leaf area. The small size and fine-scale heterogeneity of
many wetlands create additional challenges in the use of imagery
collected at mid- to coarse spatial resolutions (Ramsey & Laine, 1997).

Wetlands can, however, be effectively mapped from an aerial
photography or high resolution satellite imagery (Dahl, 2006).
Imagery can be acquired at a phenologically optimal date, and
human interpreters can identify and classify wetlands that would be
missed by themost sophisticated automated procedures. The NWI has
used aerial photography, soils and topographic maps, and fieldwork to
interpret, classify, and map most wetlands in the conterminous U.S.
(Wilen & Bates,1995). This one-time comprehensive effort can be used
as a baseline for change detection, but photointerpretation is
impractical for ongoing monitoring over large areas due to flight
time and data processing expenses. Moderate resolution satellite
imagery, while insufficient for detailed wetland classification, is well
suited to regional scale monitoring tasks and represents a good
compromise between resolving power, spatial coverage, and expense.

1.3. Wetland change detection

In general, remote sensing change detection approaches based on
image differencing (including use of transformations such as principal
components analysis, spectral mixture modeling, and various vegeta-
tion indices, and extensions such as change vector analysis) have been
found to be most effective at mapping land cover change (see Lu et al.,
2004). The NOAA Coastal Change Analysis Program (C-CAP; Dobson
et al., 1995), a major national U.S. wetlands change mapping program,
therefore recommends image differencing to isolate changed areas for
subsequent reclassification. However, image differencing in wetlands
is affected bymany of the same issues of natural variability that impact
mapping. While changes in vegetation phenology can be minimized
through the use of anniversary imagery, hydrological variability is as
significant as a cause of confusion and is far less manageable. The high
level of natural temporal variability in wetlands is a serious constraint
on the use of simple image differencing techniques.

Image differencing is also impractical when themap to be updated is
older than the time period covered by the usable sensor data records. In
the U.S., the mean size of emergent wetland patches converted to
agriculture is about 1.6 ha (Dahl, 2006). This is within the detection
capabilities of the Landsat Thematic Mapper (TM) sensors, whose data
record stretches back to 1982. However, many parts of the country were
mapped by NWI before that date, in an era fromwhich satellite imagery
of sufficient spatial resolution and suitable for regional analyses is
extremely limited or non-existent. The alternative utilized here is to use
a classified map derived from earlier work as a surrogate for historic
imagery and to examine the internal consistency of the mapped classes
in the spectral reflectance spaceprovidedby recent satellite imagery.We
suggest that this may be a fruitful approach for change detection
applications in other highly variable land cover types and in studies
spanning time periods predating the usable satellite imagery record.

1.4. Outlier detection

Change detection can be accomplished by using a prior classified
map as a guide and examining the spectral reflectance variability
within each mapped class using recent remotely sensed imagery. For
most land cover types, atypical pixels can be fairly assumed to have
changed (or in some cases to have beenmapped incorrectly in the first
place). A pixel's change likelihood can be expressed as a continuous
variable based on its departure from some measure of reflectance
central tendency for all pixels in its class. The statistical z-score or
“normal deviate” (Zar, 1996), representing the standardized distance
of a sample from the population mean, is a simple way to express this
relative deviation. By restricting analysis to pixels assigned to a class of
interest from an earlier map, a spatially explicit and comprehensive
index of change relative to that base map can be produced.
Mathematically, this technique is no different from the commonly
used image processing procedure of masking out irrelevant land cover
classes in order to compute image statistics based on a single class of
interest, for the purpose of aiding the visualization of reflectance
variability within that class. A key assumption here is that the map
classes effectively segregate pixels likely to undergo processes of
inherent variability as a coherent group, enabling separation of real
change from natural variations that would be flagged as apparent
change by a standard image differencing procedure.

Houhoulis and Michener (2000) used a z-score-based technique to
label wetland change polygons on the coastal plain of Georgia. They
conducted their analysis on a spectral “brightness” variable defined as
the summed Euclidean magnitude of all spectral bands, which was
sufficient for their purpose of detecting wetland conversion to
agricultural uses. Koeln and Bissonnette (2000) developed a methodol-
ogy termed “cross-correlation analysis” (CCA) that is based on the same
principle. CCA was developed primarily to assist re-mapping efforts,
identifying hotspots of likely change using coarse spatial resolution data
that can then be reclassified using imagery of higher spatial resolution.
In CCA, a Euclidean magnitude is summed from z-scores determined
independently for the red, near-infrared, and mid-infrared TM bands,
producing a positive-valued, non-directional z-score. Class-specific
empirical thresholds are then applied to produce a discrete changemap.

A complication in using this technique over a large region spanning
multiple satellite images is that the relationship between a pixel's z-
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score and its change probability is dependent on the distributional
characteristics of the population to which it belongs. The z standardi-
zation – a function of the populationmean and standard deviation – is
itself sensitive to the presence and frequency of outliers in the
population. Regional variation in outlier prevalence can therefore
result either in outliers remaining undetected or inmisclassification of
normal observations as outliers. The confounding of the relationship
between z-score and change probability over multiple satellite scenes
which incorporate variability in real land cover change rates
diminishes the simple z-score's utility for accurately estimating change
rates and producing consistent maps over large regions.

A practical solution to this problem is the use of statisticalmeasures
that are less sensitive to the presence of outliers than the mean and
standard deviation. The median and median absolute deviation (mad)
provide statistical class descriptions that remain nearly unaffected by
outliers except in extremely skewed populations (Jain et al., 2005) and
thus allow an internally consistent mosaic to be produced across
multiple satellite scenes spanning large areas. A z-score calculated
using these outlier-resistantmeasures is referred to here as a “resistant
z-score.” Fig. 1 demonstrates the improvement in outlier recognition
resulting from the use of thresholds based on the resistant z-score. The
lower estimation efficiency of median-basedmeasures can be an issue
in sampling from distributions that are far from normal (Jain et al.,
2005), but the use of synoptic remote sensing data obviates the need
for sampling. Furthermore, we have found that the median is
equivalent or superior to the mean for describing the central
tendencies of the normal and log-normal reflectance distributions
characteristic of specific land cover classes in optical remote sensing.

Rather than converting the resistant z-score to a discrete change
indicator by thresholding, it can be transformed to a change
probability through a logistic regression based on empirical calibra-
tion data. Maintenance of a continuous-valued indicator allows the
possibility of detecting sub-pixel changes, which is important when –

as in this case – the phenomenon of interest often occurs at or under
the spatial resolution of the sensor (e.g., Hansen et al., 2002). A
Fig. 1. Comparison of standard and resistant z-score methods for outlier detection. Top
image (a) is the band 5 reflectance histogram of a single wetland class from one TM
scene. Vertical lines represent the nearly equivalent mean and median and an upper
detection threshold corresponding to 2.6 sd or 3 mad. 10% change is simulated in (b) by
inserting additional high reflectance observations, half of them over the original
detection threshold. The resistant 3-mad threshold is less affected by the added change
than the standard 2.6-sd threshold. The standard threshold is exceeded only in the
lightly hatched area, while the resistant threshold allows detection of change in the
densely hatched area as well.
continuous output also allows the application of a variable threshold
as circumstances demand later in themapping or analysis process. The
change detection process can also be enhanced by calculating signed,
directional, resistant z-scores in dimensions defined by physically
meaningful transformations of the spectral reflectance data, permit-
ting the targeting of certain change types and allowing more direct
identification of the change undergone.

These modifications and extensions to the basic z-score change
detection technique are collectively referred to here as resistant z-score
analysis (RZA). The basic requirements that must be met in order to
successfully apply RZA are that (1) unchanged pixels of a particular
mapped class should exhibit unimodal – and preferably normal or log-
normal – reflectance distributions, that (2) change rates are not so high
that the median andmedian absolute deviation become irrelevant class
descriptors, and that (3) pixel classes identified in the baselinemap and
located on the same satellite scene undergo processes of natural
variability as a coherent group. The hypothesis tested here is that RZA
can consistently and accurately estimate pixel change probabilities
across large regions and can therefore produce useful maps of wetland
change and support determination of change rates on an areal basis.

2. Data and methods

2.1. Study area

The study area incorporates the Chesapeake and Delaware Bay
watersheds and adjacent areas (Fig. 2), where the most common
wetland types are freshwater and estuarine emergent marshes and
deciduous swamp forests. Of the wetland systems in the study area,
palustrine wetlands are most diverse, incorporating such types as
freshwater marshes of emergent herbaceous vegetation, a variety of
swamp and floodplain forests, scrub-shrub swamps, and acidic
bogs. The Chesapeake Bay watershed has been the focus of
intensive research by the U.S. Geological Survey, Environmental
Protection Agency, and other government agencies and conserva-
tion organizations. The history of wetland losses in the watershed
has been reviewed by Tiner (1998). The range of data available in
the region facilitates evaluation of techniques for monitoring land
cover change that would not be possible in many other parts of
the U.S.

2.2. TM data

We used a previously gathered three-season archive of TM data
covering the study area circa year 2000. Because most wetlands
exhibit pronounced changes in appearance over tidal or seasonal
cycles, it is not always possible to evaluate wetland condition based
on a single image. The use of multiseasonal data allowed detection of
changes only apparent during a particular phenological stage, and
also permitted multiple samples of the tidal cycle for coastal
wetlands. Since the outlier detection process was run on a single
scene at a time, it was not essential that adjacent scenes be matched
in phenological stage as long as phenology was consistent within
each scene. For example, variation in the green-up date of deciduous
vegetation across the latitudinal range of the study area caused no
problems because green-up date did not vary greatly across any
single constituent TM scene. The scenes used in this study are listed
in Table 1.

Pre-processing of all TM data included orthorectification and
registration to precisely geolocated imagery from the Multi-Resolu-
tion Land Characteristics Consortium (RMSEb0.5 pixels) and masking
of clouds, shadows, snow and ice. Masking was accomplished using a
combined modeling and digitizing approach that produced conserva-
tive masks in order to minimize the impact of contamination on
wetland class statistics, at the expense of the loss of some valid data on
each satellite scene.
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2.3. NWI data and class aggregation

NWI maps are an implementation of Cowardin et al. (1979), a
hierarchical classification based on hydrological system, vegetation
physiognomy, flooding regime, and substrate, supplemented by
additional hydrological and water chemistry details. The maps are of
varying dates and accuracy levels (Stolt & Baker, 1995; Kudray & Gale,
2000) and occasionally omit certain wetland types, primarily forests
(Tiner et al., 2000; Tiner, 2003). However, their internal consistency,
national scope, and availability in digital form (U.S. Fish & Wildlife
Service, 2006) makes them the logical base for regional change
detection work. We downloaded and merged the NWI data to
assemble a wetland class code dataset for the entire study area, and
converted it to raster format. Variations in mapping date and labeling
detail caused some inconsistencies in the resulting mosaic, but data
was available for nearly the entire study region (see Fig. 2).

We eliminated certain highly variable wetland types from the
analysis, which effectively restricted the study to estuarine and
Fig. 2. Analysis was conducted on a 3-season TM image archive across the shaded region sh
study area except for several parts of the state of New York.
palustrine wetlands. Unvegetated wetlands containing open water
were removed from the analysis because they exhibited very high,
spatially incoherent reflectance variability due to changes in
sediment content. Wetlands with floating or submerged aquatic
vegetation were likewise eliminated because of large inter-annual
variability in the spatial location of their vegetative biomass.
Unvegetated bare ground wetlands – mostly beaches – were also
removed because minor spatial registration errors at the confluence
of land and water caused unacceptable interference in the spectral
analysis of these narrow wetlands. In order to additionally protect
against registration error, a final phase of filtering was performed at a
pixel scale, by removing from analysis any wetland pixels adjacent to
upland, open water, or bare ground pixels. This had the effect of
substantially reducing – sometimes to zero – the number of analyzed
pixels in linear wetlands such as riparian corridors, while having
minimal impact on otherwetlands.Wetland loss estimates were later
produced for many eliminated pixels by averaging results from
adjacent non-eliminated pixels.
own. NWI wetlands are superimposed; digital data were available for nearly the entire



Table 1
Landsat scenes selected for use in this study

Path/Row Spring date Summer date Fall dates

14/30 7 May 2001 23 Sep 1999 30 Oct 2001
14/31 5 Apr 2001 23 Sep 1999 30 Oct 2001
14/32 5 Apr 2001 23 Sep 1999 30 Oct 2001
14/33 5 Apr 2001 23 Sep 1999 25 Oct 1999
14/34 5 Apr 2001 23 Sep 1999 25 Oct 1999
14/35 5 Apr 2001 23 Sep 1999 25 Oct 1999
15/30 24 Mar 2000 2 Aug 2001 1 Nov 1999
15/31 24 Mar 2000 28 Jul 1999 1 Nov 1999
15/32 24 Mar 2000 28 Jul 1999 17 Nov 1999
15/33 24 Mar 2000 28 Jul 1999 9 Sep 1999
15/34 24 Mar 2000 28 Jul 1999 17 Nov 1999
16/30 19 Apr 2001 3 Jul 1999 13 Nov 2001
16/31 31 Mar 2000 4 Aug 1999 13 Nov 2001
16/32 31 Mar 2000 4 Aug 1999 13 Nov 2001
16/33 31 Mar 2000 4 Aug 1999 8 Nov 1999
16/34 31 Mar 2000 4 Aug 1999 8 Nov 1999
17/30 6 Mar 2000 12 Sep 1999 30 Oct 1999
17/31 6 Mar 2000 12 Sep 1999 30 Oct 1999
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After elimination of the above types, over 4500 unique NWI
identifier codes remained in the study area, but many of the codes
were represented by only a small number of pixels. Accurate outlier
detection requires classes that contain enough pixels to permit the
extraction of reliable statistical measures of spectral reflectance, and
with minimal within-class natural reflectance variability. These
requirements were addressed by aggregating the codes into classes
that were large enough to provide reliable statistics, but that retained
distinctions between all NWI-coded characteristics likely to influence
spectral reflectance. The finest aggregated class inwhich a pixel can be
placed within the limits of acceptable population size provides the
most precise statistical description of its expected characteristics, and
therefore allows the best opportunity for successful change detection.
For example, Fig. 3 illustrates the reflectance frequency histograms
pertaining to an inland, seasonally flooded emergent wetland
aggregated with other wetland types at various levels of detail. The
finer aggregation levels correspond to more highly specified environ-
mental descriptions, with statistical characteristics more representa-
tive of the wetland type of interest.

Because the spectral reflectance characteristics of wetlands are
primarily related to vegetation structure, leaf characteristics, and soil
moisture (Brook & Kenkel, 2002), class aggregations were based on
vegetation structure, leaf persistence, leaf geometry (for wooded
wetlands only), wetland system, and flooding regime (see Table 2).1

Some potentially useful characters, such as emergent wetland leaf
geometry, were not used because they were only occasionally specified
in the NWI data. Estuarine and palustrine wetland systems were kept
separate because of their distinct vegetation and hydrological dynamics.
The resulting aggregated classes were then split based on the additional
hydrological details provided in the NWI codes. In general, if a
substantial reduction in the size of a class could be realized by splitting,
and all resulting classes still retained a sufficient number of pixels – two
hundred was used as a minimum cutoff – then the split was made. For
hybridNWIcodes composedofprimaryand secondaryvegetation types,
the vegetation-specific information was retained for both types.

The initial aggregation process produced a grouping of the NWI
codes into238 separate classes.However, because someclasseswerenot
adequately represented on all satellite scenes, coarser aggregations – in
which wetlands were lumped into a smaller number of classes
composed of a greater number of pixels each – were produced by
lumping together classes which differed in terms of their hydrological
modifiers and regimes, leaf geometries, and (for hybrid NWI codes)
secondary vegetation types. Distinctions between vegetation physiog-
nomies, leaf phenologies, and estuarine versus palustrine wetland
systems were maintained in all cases. The three higher level aggrega-
tions totaled 100, 29, and 13 classes respectively. The characteristics
used to create all aggregation levels are shown in Table 2.

The effectiveness of the aggregation scheme for variability parti-
tioning can be evaluated by examining the evenness of the class
pixel counts across the aggregated analysis classes. The cumulative
distribution function illustrating the total area represented by the
wetland classes in descending order of frequency is shown in Fig. 4 for
the original NWI codes and for two of the aggregation levels produced
here. Although a small fraction of the classes occupy most of the total
wetland area in all cases, aggregation provides a more even numerical
representation of the range of wetland types in the study area than the
original NWI codes. Even the smallest classes produced in each
aggregation retained sufficient numbers of pixels for adequate
characterization on most TM scenes.
1 The simplest classification used was an aggregation composed of 6 estuarine
classes (persistent emergents, emergents with unknown phenology, deciduous forest,
evergreen forest, deciduous shrub, and evergreen shrub) and 7 palustrine classes
(persistent emergents, non-persistent emergents, emergents with unknown phenol-
ogy, deciduous forest, evergreen forest, deciduous shrub, and evergreen shrub).
2.4. Resistant z-score analysis

TM bands 3 (visible red), 4 (near-IR), and 5 (mid-IR) were used in
the analysis. These bands have been found to be the most useful for
discriminatingwetland vegetation types (Brook & Kenkel, 2002); band
5 has been found particularly useful (Harvey & Hill, 2001; Johnston &
Barson, 1993). Avoiding the use of the more haze-prone visible blue
and green bands produced statistics less sensitive to within-scene
atmospheric variability. The resistant z-score for each pixel on each
scene was computed using

z̃ci ¼ ∑
5

b¼3

jxcbi− z̃cbj
σ̃ cb

ð1Þ

where z̃ci is the resistant z-score of the ith pixel in class c; xcbi is the
band b reflectance of that pixel; x̃ cb is the median band b reflectance
of class c; and σ̃cb is the median absolute deviation of the band b
reflectance of class c. Absolute values were used to maintain a strictly
positive, non-directional total, and the orthogonal band z-scores were
summed using the “city block”method (McCune & Grace, 2002) rather
than the more typical Euclidean distance. The Euclidean distance,
which utilizes the squares of the individual band scores, tends to
weight themost atypical bandmore than the others. Because real land
cover change should generally impact more than one of the TM bands,
we felt that simple addition of the absolute-valued z-scores would be
less susceptible to atmospheric noise and other errors in the sensor
and data processing streams.

In order to provide indicesmore amenable to physical interpretation,
resistant z-scores were also calculated on a tasseled cap transformation
(TCT) of the spectral data. The TCT (Kauth&Thomas,1976; Crist & Cicone
1984) provides the physically significant indices of “brightness,”
“greenness,” and “wetness” (TCb, TCg, and TCw) through amathematical
transformation of the spectral band reflectances. We calculated the TCT
components for each scene using coefficients provided by Huang et al.
(2002). Because we wanted to interpret change type through an
examination of TCT z-scores, we omitted the absolute value from the
17/32 6 Mar 2000 12 Sep 1999 30 Oct 1999
17/33 6 Mar 2000 17 Sep 2001 30 Oct 1999
17/34 6 Mar 2000 10 Jun 2000 30 Oct 1999

Inter-scene variability in the dates selected for each season is acceptable, because z-
scores are calculated on each scene independently and then merged. The spring date
represents deciduous leaf-off conditions in all images, the summer represents leaf-on,
and the fall dates vary but are generally consistent within each scene. Nearly all images
were obtained by the Landsat 7 ETM+ sensor.
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resistant z-score equation and instead computed a signed, directional z-
score for each TCTcomponent. The directional TCT resistant z-scores for
each pixel on each scene were computed using

z̃TC ¼ z̃c b;g;wð Þi ¼
xc b;g;wð Þi − x̃c b;g;wð Þ

σ̃ c b;g;wð Þ
ð2Þ

where z̃c(b,g,w)i is the TCb, TCg, or TCw resistant z-score of the ith pixel
in class c; xc(b,g,w)i is the TCb, TCg, or TCw of that pixel; x̃ c(b,g,w) is the
median TCb, TCg, or TCw of class c; and σ̃c(b,g,w) is the median absolute
deviation of the TCb, TCg, or TCw of class c.

All computations were performed on a single TM scene at a time to
avoid between-scene bias due to variations in atmospheric and
hydrological conditions, and to reduce the geographic component of
phenological and morphological vegetation variability within the
wetland classes under analysis. However, analysis of single scenes
reduced the number of pixels in each class available for computation
of class statistics. If the number of available pixels for a particular class
on a scene using the finest (238-class) aggregationwas fewer than one
Fig. 3. Reflectance frequency histograms of TM bands 3 (red), 4 (near-IR), and 5 (mid-IR)
aggregation (a–c) contains all emergentwetlands, themedium aggregation (d–f) contains on
stipulates that the hydrological modifier be “seasonally flooded/saturated.” Dashed lines rep
generally normal or log-normal. Bimodal distributions occur in the coarse aggregation due
hundred, the scores for pixels in that class were instead computed
using the equivalent class in the finest higher level aggregation for
which sufficient pixels were available. If fewer than one hundred
pixels were available on the scene using even the coarsest (13-class)
aggregation, no score was produced for pixels of that class on that
scene. This procedure was repeated for all TM scenes in the study area,
and for each of the three seasons of data. The individual scene scores
were combined into seasonal mosaics by averaging scores produced in
scene overlap areas. The seasonal mosaics were then combined by
averaging the available scores across the three seasons.

2.5. Reference data

Reference data were needed to calibrate and validate the
relationship between z-score and change probability. High quality
digital orthophotos contemporary with the TM imagery were
available from the states of New York, New Jersey, Delaware, West
Virginia, and North Carolina. For a number of regions in these states,
NWI provided us with the historic aerial photography used in their
original mapping. This allowed us to determine whether wetlands
appearing abnormal in recent photos had in fact changed and
at different levels of class aggregation for a springtime emergent wetland. The coarse
ly those that are non-tidal and seasonally wet, and the fine aggregation (g–i) additionally
resent normal approximations; effective use of RZA requires that histograms should be
to the distinct reflectance characteristics of tidal and non-tidal wetlands.



Table 2
Wetland characteristics used to create the four aggregation levels, and the possible
values associated with each

Characteristic Possible values Notes

Wetland system ∘ Estuarine
(used in all aggregation levels) ∘ Palustrine

Vegetation structure ∘ Emergent
(used in all aggregation levels) ∘ Forest

∘ Shrub
∘ Other

Vegetation phenology
(used in all aggregation levels)

∘ Evergreen Including emergent vegetation
persistent year-round

∘ Deciduous Including non-persistent emergent
vegetation

∘ Unknown Unspecified in NWI code

Hydrological regime
(used in aggregation levels 1–3)

∘ Wet Water typically covering surface
∘ Tidal Primarily influenced by tidal

flooding
∘ Seasonal Primarily influenced by seasonal

flooding
∘ Intermittent Typically not flooded

Mixed types
(used in aggregation levels 1–2)

Structure and phenology of
secondary vegetation types in
mixed polygons maintained in
levels 1 & 2; in higher levels
only the primary type was kept.

Leaf geometry
(used in aggregation level 1)

∘ Narrow Needle-leaved woody vegetation
∘ Broad Broad-leaved woody vegetation
∘ Unknown Unspecified in NWI code

Hydrology (used in
aggregation level 1)

∘ NWI
modifiers

Retained wettest code specified

The coarsest level of aggregation (level 4) was based on only the first three
characteristics and resulted in 13 wetland classes. The finest level (level 1), based on
all characteristics shown, resulted in 238 classes.

Fig. 4. Percent wetland area represented as a function of percent number of wetland
classes included, for the coarsest and finest aggregation levels and the original NWI
codes. Classes are added to the cumulative area function in descending order of size. The
ideal aggregation strategy reflects a balance between the need for a large enough
number of classes to represent variability and the need for classes sufficiently large to
provide reliable statistics.

Table 3
Change types used in photointerpretation process, the change category to which they
belong, their descriptions, and the intensity of change they were recoded to for
validation purposes

Change
category

Change type description Intensity

Development ∘ Converted to extractive (e.g., mining) purposes Major
∘ Developed for residential or commercial use Major
∘ Developed for farm/rural use Major
∘ Road construction Major

Land
clearance

∘ Land cleared for residential or commercial development Major
∘ Land cleared for agricultural development, including
logging where forest regeneration unlikely

Major

∘ Land cleared and converted to plantation forestry Major
∘ Land cleared for development other than agriculture
or urban use

Major

∘ Land cleared, bare soil exposed; purpose uncertain Major
Logging ∘ Logged and converted to plantation forestry Major

∘ Forest with over 50% of canopy vegetation removed Minor
∘ Logged; less than 50% of canopy vegetation removed Minor

Vegetation
modification

∘ Vegetation removed by flooding, insect damage, etc. Major
∘ Altered, but not extensively, by flooding, insect
damage, etc.

Minor

∘ Shift in physiognomic type due to natural succession Minor
∘ Shift in physiognomic type for any reason Minor

Hydrologic
modification

∘ Naturally unflooded area now mostly flooded;
little live vegetation visible during growing season

Major

∘ Amount of surface water increased substantially Minor
∘ Decrease in amount of standing water or soil water
content; often as consequence of wetland drainage

Minor

Recovery ∘ Formerly drained area had natural hydrology restored Minor
∘ Formerly flooded area no longer flooded
(e.g., dam removal)

Minor

Other ∘ No change observed None
∘ Apparent misinterpretation or coding error in NWI data None
∘ Unknown Unknown
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permitted a more certain assignment of change type. We made field
visits to a few regions of intense wetland modification, further
increasing confidence in our photointerpretation. Sample locations
were randomly selected in areas covered by the historic photo-
graphy, from populations stratified on the basis of wetland type, U.S.
EPA ecoregion, and calculated z-score. Although we made an effort
to represent the geographic range of the study area as well as
possible within the constraints of the reference data, the large
majority of samples were taken from the coastal plain between New
Jersey and North Carolina.

In order to develop a stronger assessment of the methodology's
change omission error rate, we gathered additional samples from each
examined orthophoto by selectingwetlands showing visible change in
the photography. Although this aspect of the sampling process was
inherently non-random,wemade an effort to select changed areas of a
variety of types and sizes. A total of 277 sample areas – 156 from the
stratified random sampling, and the remainder visually selected to
test omission error – were photointerpreted to ascertain a range of
characteristics descriptive of their conditions at the time of NWI
mapping and circa year 2000, including, but not limited to, land use
and land cover, change type (if any), and degree of heterogeneity. The
interpreted areas were approximately 1 ha in size, centered on the
randomly selected point.

Many types of change were observed and interpreted; if multiple
types were encountered, that causing the most intense change in land
surface conditions was recorded. Many of the change type interpreta-
tions (e.g., where land clearance had occurred but no construction had
yet taken place) relied on assessing the spatial context within which
the change occurred. Before conducting statistical analysis, we
recoded photointerpreted change types to a simple variable repre-
senting major change, minor change, or no change. For this purpose,
major change was defined as change that resulted in nearly complete
vegetation removal, exposure or disturbance of soil, or a large change
in the proportion of the ground surface covered by water. Minor
change represented all other changes detectable in aerial photo-
graphy. Occasionally it proved impossible to determine whether
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change had occurred or not; these samples were discarded. The
change type descriptions and their coding as major or minor change
are shown in Table 3.

We also compared the RZA results with two other sources of
spatially explicit reference data that overlapped the study area. Erwin
et al. (2004) used a time series of aerial photography to map marsh
loss through 1994 on the eastern shore of Virginia, and provided us
with a digital representation of their results. RZA change predictions
were also visually compared to published maps of similar marsh loss
in Jamaica Bay, New York (Hartig et al., 2002).

2.6. Change probability calibration

We used a binomial logistic regression in order to calibrate the
relationship between z-score and change probability. In order to
implement this, we needed to first collapse the plot change data to a
binary change/no-change indicator. After verifying that requirements
of normality weremet, we assessed the degree of separability of major
change, minor change, and no-change plots by examining the z-score
histograms of the three groups and by using an ANOVA procedure to
determine whether the minor change plots would be more effectively
treated as change or no change for the purpose of binomial modeling.
We recoded the change data based on the outcome of this test, and
Fig. 5. The upper two images show mid-summer NDVI for an area of coastal Maryland in 1990
bands 3, 4, and 5)produced the results in (c),where darker shades represent increasing change in
floodplain vegetation. RZA (d) is less sensitive to tidal stage because the entire classes of analy
then performed a logistic regression of binomial change data against
z-score. For this purpose we used only the plot data that had been
randomly selected.

We performed a number of statistical tests in order to assess the
appropriateness of the logistic model and the strength of
the modeled relationship. We performed a model χ2 test on the
difference between the residual and null deviances to evaluate the
null hypothesis of no linear relationship between z-score and
the natural log of the odds of change, and calculated D2 and
Nagelkerke's R2, measures which estimate the proportion of
variability explained by the model and represent logistic equiva-
lents to the R2 coefficient of determination. We then applied a χ2

test to evaluate the significance of the error remaining in the model
after incorporation of z-score. Finally, in order to test the fit of the
logistic model to the data, we performed a χ2 “goodness of fit” test
between binned observations and expected values and produced a
calibration plot showing the 95% confidence interval of the
proportion of plots changed in each bin.

2.7. Accuracy assessment

After evaluating the fit of the developed logistic model, we applied
the model to all our reference data, including the targeted change
(a) and 1999 (b). Conventional image differencing (the sum of the absolute differences in
tensities. Tidal stage variation along the river causedhigh change probabilities in emergent
sis pixels are similarly impacted, allowing real change to be more easily identified.



Fig. 6.White-outlined polygons represent areas of coastal marsh loss to tidal ponds and
open water on Virginia's eastern shore (Erwin et al., 2004, buffered slightly here to
remove excessive detail). Dark shaded areas represent high RZA wetland change
likelihood circa year 2000, spatially smoothed to higher resolution for better
comparison with the polygons. The RZA change area indicated by the arrow appears
in aerial photography to be an area of sediment accumulation rather than flooding and
thus was not mapped by Erwin et al. Other inconsistencies may be due to changes that
occurred between 1994 and 2000.
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plots, and plotted Cohen's κ, a measure of the model's improvement
over random predictions, across the range of possible threshold
values. We also produced a Receiver Operating Characteristic (ROC)
curve, a threshold-independent metric to evaluate the model's overall
sensitivity and false alarm rate. Finally, in order to assess the
generality of the model developed, we split all the reference data
randomly into two sets and generated an optimum threshold using
the first set. We then assessed the accuracy of predictions made using
the threshold against the second, independent data set by generating
a confusion matrix and calculating Cohen's κ.

3. Results

3.1. Identification of change under conditions of natural variability

Fig. 5 illustrates the differences in results between conventional
image differencing and RZA, as applied to an area on the eastern
shore of Maryland. Tidal emergent wetlands along a river are
flagged as changed by the image difference because the more
recent image was obtained during a higher tidal stage than the
historic image. RZA change detection is far less sensitive to this
problem because most wetlands of that analysis class are
inundated, causing the expectation for the class to reflect the
flooded state.

Visual comparisons of RZA change estimates to the fine-scale.
Erwin et al. (2004) and Hartig et al. (2002) reference data yielded
favorable results, assuming proper calibration of the relationship
between z-score and change likelihood. Marsh loss polygons deli-
neated by Erwin et al. (2004) are shown in Fig. 6 against a backdrop
formed by the z-scores derived from RZA. The correspondence is good,
despite the fact that some polygons are not much wider than a TM
pixel. The area of high z-scores indicated by the arrow appears in
aerial photography to be an area of sediment buildup; Erwin et al.
(2004) mapped only flooded wetlands and so omitted this area.
Directional z-scores based on TCT components can distinguish and
map both phenomena separately. RZA change estimates also showed a
high degree of agreement with the Jamaica Bay marsh loss maps of
Hartig et al. (2002; not shown).

3.2. Separability assessment

The resistant z-score frequency histograms for the major change,
minor change, and no-change codes are shown in Fig. 7. A one-way
ANOVA means test performed on the randomly sampled portion of
the reference data indicated that the means of the three change
codes were not equal (p≪0.001). In order to determine the best
grouping of the three change codes into a binomial classification, a
Tukey test (Zar, 1996) was run to test the significance of differences
in mean between (a) the no-change code and the combined minor
and major change codes, and (b) the major change code and the
combined no change and minor change codes. Both groupings
showed equally significant differences in means (p≪0.001). Since
using grouping (a) would produce a more sensitive model, we chose
to lump the minor and major change codes and to parameterize the
logistic regression to simply distinguish changed from unchanged
wetlands.

3.3. Logistic regression

The logistic model found a strong relationship between z-score
and change probability, based on the 156 randomly selected
change/no-change sample points from which it was built
(Table 4). The model χ2 test rejected the null hypothesis of no
linear relationship between z-score and the log-odds of wetland
change (p≪0.001). D2 and Nagelkerke's R2 were found to be 0.473
and 0.633, respectively. The model residual deviance was non-
significant (p=0.998). The data were binned into eight groups in
order to run the χ2 goodness of fit test; in order to meet the
rule of thumb that no bins should have model expectations of
less than one (Zar, 1996) we eliminated data from the extreme
low and high tails of the z-score distribution. The dropped data
were well-modeled and removing them should not have affected
the conclusions. The test resulted in an acceptance of the null
hypothesis that there was no difference between observed and
model-estimated values and that the logistic model is appro-
priate for the data (p=0.315). A calibration plot illustrating the
95% confidence intervals for each bin is shown in Fig. 8; all
intervals overlapped the 1:1 line of perfect change probability
estimation.

3.4. Accuracy assessment

The ROC curve and accuracymeasures against the range of possible
threshold values for all reference data are shown in Fig. 9. The optimal
κ, at a threshold of pchange=0.2925, was 0.817, indicating a strong
improvement over randomness. The area under the ROC curve of 0.94
(out of a possible maximum of 1.0) also signified a well-fitted model,
with high sensitivity and resistance to false alarms. The optimal
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threshold generated from the randomly selected training data set,
pchange=0.295, was nearly identical to that generated from all
reference data. The confusion matrix derived from the application of
this threshold to the independent validation data is shown in Table 5,
and resulted in a κ of 0.779, an overall prediction accuracy of 89.5%,
and low rates of both commission and omission errors.

3.5. Change probability mapping

The logistic equation relating resistant z-score to change prob-
ability was applied to all pixels across the study area, producing a
comprehensive map of the probability of wetland change since the
date of NWI mapping in the 1970s and 1980s. We produced an
estimate of local change intensity – the proportion of wetland area
changed – by spatially aggregating pixel change probabilities. In
order to visualize small patches of wetland change and areas of
moderate change intensity more easily over large spatial extents, we
averaged pixel change probabilities at scales of 500 to 1500 m, and
used a logarithmic color ramp. Wetland change intensity from the
date of NWI base mapping to approximately year 2000 is shown for
a large portion of the study area in Fig. 10. Major hotspots of wetland
change were found in the coastal areas of southern Virginia and
Fig. 7. Resistant z-score histograms of sampled no change, minor change, and major change
shown for each change category. Both major and minor change are reasonably separable fro
change, while Q90no changebQ10major change indicates that major change can be clearly discri
northern North Carolina, where many forested wetlands have been
converted to agriculture and residential development, and in regions
of salt marsh loss bordering the Chesapeake and Delaware Bays.
Many smaller discrete areas of change were found, primarily
concentrated near population centers.

4. Additional applications

Brief accounts of two additional applications for whichwe have used
the RZA techniques are givenhere.Wehope thesewill encourage natural
resource scientists and land managers to consider use of this or related
remote sensing-based techniques for their own application needs.

4.1. Regional monitoring of marsh degradation

Relative sea level rise is occurring along the coastlines of the
eastern U.S. and is causing the loss of salt water marshes, particularly
on the Gulf coast and the mid-Atlantic seaboard (Morris et al., 2002;
Hartig et al., 2002; Erwin et al., 2004). This concern has been
addressed via remote sensing by applying spectral mixture modeling
toTM imagery to estimate the fraction of each pixel occupied bywater
(Kearney et al., 2002; Rogers & Kearney, 2004). However, spectral
areas. A smoothed kernel density estimate and the 10%, 25%, 75%, and 90% quantiles are
m no change: Q75no changebQ25minor change indicates a fair ability to distinguish minor
minated.



Fig. 8. Sample plot change fraction for binned change probability intervals vs. mean bin
change probability, with 95% confidence intervals. The number of sample plots falling in
each bin appears above the confidence interval bars. All sample plots used here were
randomly selected, stratified on resistant z-score. The 1:1 line representing a perfect
logistic fit is shown; all confidence intervals overlap it. Figure produced using routines
from Freeman (2007).
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mixture modeling is a complex process relying on accurate para-
meterization and is highly sensitive to between-scene changes in
vegetation phenology and tidal and atmospheric conditions. Conse-
quently, consistent application over multi-scene areas is challenging.
In addition, the output is a measure of current inundation across the
landscape without reference to former conditions, which may not be
ideal for assessing change.

RZA can be used to circumvent some of these difficulties. When
marshes are lost, decreases in summer TCg can be expected, as well as
increases in TCw for all seasons. We therefore represented coastal
marsh inundation with an index formed by subtracting the summer
TCg resistant z-score from the averaged spring and summer TCw scores.
The resulting index has its highest values for pixels with above normal
TCw and below normal TCg, and so can be used to quantify marsh
degradation. Because this index is determined on a per-class basis, it
represents inundation relative to prior conditions and thus reflects
change rather than simply current conditions. Quantitative use of the
index would require calibration for the task being addressed, which
was not done here. However, the relative values of the index are useful
for interpretation purposes. Fig. 11 shows the relative degree of marsh
degradation estimated for an area on the eastern shore of the
Chesapeake Bay which includes Blackwater National Wildlife Refuge,
where marsh loss has been severe (Kearney et al., 2002).

4.2. Invasive species mapping

An invasive variety of the reed grass Phragmites australis has
spread widely in tidal marshes along the mid-Atlantic coast (Leonard
et al., 2002). Our research has indicated that the morphological and
stand structure of this plant cause much higher TCg and TCb z-scores
than are associated with the native marsh vegetation. The Nature
Conservancy mapped the distribution of the plant along the Virginia
eastern shore in 1996 using aerial videography (Ngu et al., 1996). The
patches they delineated are shown superimposed on year 2000 TCb

scores in Fig. 12. Research by Thomas (2006) lent additional support to
the mapping of Phragmites using RZA, but found that the TCw score is
the strongest indicator of its presence.

5. Discussion

5.1. Assessment of resistant z-score analysis for wetland
change monitoring

Based on the performance of RZA in detecting change in the test
data, we conclude that it can successfully identify potential locations
and hotspots of wetland change. In general, these areas are worthy of
further investigation at a finer spatial scale and withmore attention to
individual site characteristics. However, although RZA performed well
in the tests here, there are several reasons to be cautious in interpreting
the results.

The extreme natural variability of wetlands and the spatial
heterogeneity of the processes which impact them can cause
problems that are difficult to circumvent without more sophisticated
modeling. For instance, our map indicated a high likelihood of change
Table 4
Assessment of logistic model for prediction of change probability from resistant z-score

Test Chi square df P

Null deviance 205.89 155 0.004
Residual deviance 108.54 154 0.998
Model χ2 97.35 1 ≪0.001
Goodness of fit 7.063 6 0.315
D2 = 0.473

ln
pchg

1−pchg

� �
¼ −4:296 þ 0:000615 � z̃Nagelkerke's R2 = 0.633
in a number of wetland areas along the Passaic River in northern New
Jersey. These wetlands were flooded when the spring TM image was
collected for this area, a natural occurrence there at that time of year.
Although RZA compared the Passaic wetlands only to others classified
similarly by NWI, most other wetlands of that class were not flooded,
whether due to differing hydrological characteristics or spatial
variability in storm or snowmelt patterns. Consequently, a high z-
score for the Passaic wetlands was calculated in the spring image and
propagated at a reduced strength through the subsequent seasonal
averaging process. Tidal movement time lags could create similar
challenges, particularly in large estuaries such as the Chesapeake Bay
(Kearney et al., 2002). Although RZA is less impacted by tidal variation
than simple image differencing, inconsistencies due to spatial
variability in tidal timing may not be easily resolved.
Fig. 9. Image (a) is the ROC curve for the logistic regression, calculated based on all
sample data. The optimal probability classification threshold based on minimization of
the curve distance from the upper left origin is 0.29. The area under the curve (0.94)
signifies a well-fit model. Image (b) is a plot of several accuracy measures against
change probability threshold. The threshold based on optimizing Kappa is identical to
that based on minimizing ROC curve distance. Figure produced using routines from
Freeman (2007).



Table 5
Accuracy assessment of wetland change prediction based on thresholded change
probability, evaluated against independent validation data

Predicted Observed

Change No change Percent correct

Change 76 5 93.8%
No change 9 44 83.0%
Percent correct 89.4% 89.8%
Commission error 6.17% Overall accuracy 89.6%
Omission error 10.6% Cohen's κ 0.779
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Silvicultural activities are another major source of confusion,
particularly if the goal of the analysis is to detect wetland loss rather
than simply land cover change. Much of the forested land in the
coastal portion of the study area – including some wetlands – is
occupied by loblolly pine plantations, which are characterized by a
Fig. 10. Estimated change intensity across a large part of the study area. The beginning of t
mapping, and so varies across the study area, but is generally from the late 1970s to early 1
short rotation time, clearcutting, and subsequent replanting. Drastic
changes in reflectance are therefore a common feature of the
landscape in this area. These changes are not associated with wetland
loss, although they cause change in vegetation structure and potential
degradation of some of the wetland functionality discussed above.
Similarly, some land use changes, such as introduction of livestock
grazing, may have large impacts on reflectance characteristics while
allowing the continued existence of wetlands. Such ambiguities would
manifest themselves as variation in the relationship between z-score
and change probability, depending on wetland type and the change
process undergone. A cautious interpretation of indicated change in
our current map product is therefore essential.

5.2. Prospects for further development

Although we have not yet evaluated the magnitude of the above
factors' influence on the relationship between z-score and change
he time period over which change is estimated is determined by the date of NWI base
980s. The end of the change estimation time period is approximately year 2000.



2 Agricultural systems – particularly crops – are another variable land cover type in
which RZA change detection would likely be helpful.

Fig. 11. RZA-estimated coastal marsh degradation in the area of Blackwater National
Wildlife Refuge on the Chesapeake Bay in eastern Maryland. Green areas represent
relatively intact marsh, with yellow and blue representing increasing likelihood and
intensity of degradation and conversion to open water. The wildlife refuge is
represented by the black polygon; uncolored areas within it were mapped as open
water by NWI.
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probability, it is likely that calibrating the logistic regression to
produce an equally reliable and unbiased change probability for all
wetland types and change processes would require a substantial
increase in sampling intensity. An increase in the amount of reference
data would also permit the construction of a multiple logistic
regression based, perhaps, on the seasonal directional TCT z-scores,
which would place greater weight on key diagnostic features for
detecting change in different wetland environments. If change type is
found to strongly influence the z-score/change probability relation-
ship, it would be necessary to construct a decision-making procedure
by which the change process most likely to be operating on any pixel
could be identified. That information could then drive a logistic
regression parameterized for change type. Directional TCT z-scores
and local land use informationwould probably play amajor role in any
determination of change type.

Change probabilities could be aggregated over summary areas
such as counties and watersheds for comparative purposes. However,
potential biases due to the influence of wetland and change type on
the change probability relationship would first need to be addressed.
Otherwise, change rates in areas dominated by some wetland or land
use types (e.g., plantation forestry) would not be comparable to those
in other areas. Domination of some areas by problematic wetland
types (e.g., narrow riparian wetlands or fringing wetlands that are
difficult to resolve at 30-meter resolution) would likewise cause
problems of comparability. In addition, the variable baseline date of
the NWI maps causes the change detection time period to differ
between areas. Fully automated updating of NWI maps would
encounter the same problems, along with additional difficulties such
as the spatial ambiguities of NWI mixed polygons, in which a polygon
is composed of two distinct wetland types but no spatial information
is provided as to where each is located.

Outlier detection is ultimately limited by the quality and
consistency of the original map product. While the NWI data are
remarkable considering the magnitude of the task they address,
omissions and misclassifications will occasionally be encountered.
Omitted and newly created wetlands cannot be addressed by this
methodology. RZA is by no means a method of improving the baseline
maps upon which it is run, but rather provides a tool to identify land
cover changes and make revisions and pattern assessments in the
absence of a comprehensive repetition of the process by which the
baseline maps were originally made.

6. Summary and conclusions

It is difficult to confidently detect change in land cover types that
exhibit high temporal rates of natural variability, particularly if that
variability occurs unpredictably or varies in amplitude. Wetlands are
an excellent example,2 since water moves in and through the systems
at rates that vary at several temporal scales and in response to other
variables (e.g., precipitation). However, by using outlier-resistant
statistical estimators and appropriate aggregations of NWI wetland
classes, RZA allows the computation of a relatively consistent measure
of wetland change probability. We used this measure to produce a
regional map of change probability for the mid-Atlantic region. The
method avoids the difficulties of atmospheric and phenological
variability inherent in change detection based on image differencing.
The resulting map can be used to target areas for closer inspection and
investigation on a site-specific basis, and the technique has a number
of other potential specific applications at both regional and local
scales. With additional work to resolve confusion resulting from
natural spatial heterogeneity and land use patterns, this technique
could form the core of a process to produce updates to NWI maps,
and to compute wetland change rates on an areal basis. Three con-
ditions are necessary in order to employ RZA for these applications.
The most basic applications require that (1) change rates are not so
high as to cause the statistical measures to be non-representative of
unchanged wetlands; and (2) unchanged classes exhibit somewhat
normal or at least unimodal reflectance distributions. Map updates
and areal change rate determination require that (3) the relationship
between reflectance atypicality and change probability can be
parameterized across wetland types, geographic regions, and land
use categories.
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Fig. 12. Phragmites australis patches mapped through aerial videography by Ngu et al. (1996) are represented by white polygons. They are superimposed on 3-season averaged TCb
resistant z-scores inwhich dark shaded areas represent areas of abnormally high brightness in the year 2000. The plant may have continued to spread in the time between the aerial
assessment and the TM imagery used here.
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